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VERY HIGH-LEVEL CONCURRENT PROGRAMMING

Yuan Shi

Supervisor: Noah Prywes

Concurrent systems are typically large and complex, requiring
long development time and wmuch labor. They are, therefore, prime
candidates for simplification and automation of the design and
programming process. Their major application areas include real time
systems, operating systems and cooperative computation by a number of
independently developed geographically dispersed subsystems. New
applications are emerging with the trends towards wide usage of
personal computers connected in a network and towards use of parallel
processing in supercomputer architectures.

The prime contribution of this dissertation is the creation of a
programming style and an environment that allows the human designers
to develop an implementation independent, very high level functional
view of the concurrent system$. The translation of this view into a
concurrently operating system is performed automatically. There is an
emphasis on the human engineering aspects of the designer - computer
interactions. The designers specify the problem through declaring
variable structures and cowmposing equations which relate the
variables. Thus the specification is entirely declarative and -
assertive, without reference to its computerization. The designers
partition the overall specification into wmodules which are each
o defined independently. These modules also become candidates for being
= computed concurrently. Each module consists of a subset of the
’ variable declarations and equations. The designers view the
t concurrent system statically, as if all input and output data are
E'.- available a priori, and the equations provide mathematical
- relationships among the data. The semantics of submitting the
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specification to the computer is to have the computer give appropriate
values to variables that all the equations are true. Excluded are
such dynamic implementation concepts as sequences of program events, -
synchronization, exchanges of messages and relative timing. To
accommodate the large size of typical systems, the methodology
supports independence in specifying and testing individual modules.
To aid debugging and attain reliability, language processors detect
inconsistency and incompleteness errors in both the individual modules
and in the global system. The translation from the specification into
. a respective computation by an object computer architecture is
i performed by the language processors. The entire design, prototyping
1 and simulation of a system can be performed on a host computer and
eventually moved to an object distributed computer system which is put
into productive operation.

o The dissertation describes an investigation of this approach
b using as the abject computer architecture a modern distributed system
consisting of interconnected sequential processes, each operating
under a mltipmtjral-ing timesharing operating system. . - 4

The designers of a concurrent system interact with automatic
systems on two levels: On the global level, the Configurator accepts
as input a graph of the network of subsystems, modules and files. It
verifies the validity of interfaces and implements the network by
generating command language programs that set up communications and
optimize parallelism among modules. The modules are exvecuted under
multiprogramming time sharing operating systems in respective
sequential processors in a network.

MG annoon SANNCEnS — RN

On the local level, the MDDEL Compiler accepts as input an
individual module specification. It performs checking of completenecs
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$ and consistency of variables and equations and generates an optimiz.d .
- sequential program in a high level language (PL/I). :
9 ‘ :
:-' The above two systems interact in checking the integrity of the ‘
i ¢ specified system and generating the implementation programs. Taey i
f.,: have been implemented in PL/I, in the environment of Digital's VAX/VMS
& -2 - :
g !
I:' '.":.'-';' 'N::;' ..- _‘ A: ';_. _: _ :4.-_: e s A . _._‘A_.__'..;v_;j_;._.i’_s;:.:.;_&_‘e.__n_..l*__.,zu--'.- I S SRS S0 St SRSt It R TR gy |



Rty
o e A gc et den o, Jlutt i e et 5 or e e e dntth et daie Jine s it Jhabe e e A U T A A L A A i i R i Y

operating system. Thug, automatic program design and generation
methodology is used to translate the very high 1level specification
into an efficient customized concurrent computation in a chosen
enviromment. '

One contribution of the dissertation of the dissertation is the
exploration of the generality and power of this style of application
- systems development. This style of programming is novel and there has
been 1little experience with it. The overall methodology is
illustrated through two characteristic examples: a resource
; allocator, widely used in real-time systems, and a cooperative

development of econometric models in a distributed enviromment. The
examples present the new style of programming.

The other contributions of the dissertation are in the solutions
to specific concurrent system design problems. This consisted of
employing new concepts and algorithms. The implementation of a
specification is based on communication of messages among concurrent
processes. This requires checks of the specification to alert the
designer to the existence of inconsistencies and automatic design of
implicit synchronization and prevention of deadlocks, The entire
concurrent system must cooperate in the distributed computations,
especially in initiation and termination of system—wide iterative
computations.
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The dissertation consists of three parts. Part I presents the
new style of specifying concurrent systems, as well as high level
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- descriptions of automatic design and programming environment. Part II
i docunents the design of the Configurator. part III documents the
L - modifications to the previously developed MODEL compiler which were
; : necessary for concurrent operation of programs and communications
@

- among the programs. °
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CHAPTER 1
INTRODUCTION

1.1 THE PROBLEM AND THE OVERALL APPROACH

Concurrent computation is widely used in operating systems and in
real time systems. There are novel application areas, such as
robotics, which require coordination of a number of activities. It is
also increasingly used in distributed processing systems for
cooperative computation by geographically dispersed users, The
greatest potential for use of concurrent computation is in the
emerging parallel computer architectures ([Arvind,83; Dennis, 80;
Gaxd,82; Smith,78; Treleavan, 82]. Programming of concurrent
computing has proven to be very complex and prone to errors.
Experience indicates that it consumes enormous amount of time for
program development and maintenance. The difficulties encountered lie
partly in the large size of typical concurrent systems, but more
importantly in the need for the programmer to take into account
sensitive interactions between parallel streams of program events.
Por these reasons, making concurrent programming easier has received
much attention. A number of programming languages in the style of
conventional high level languages have been developed (Brinch, 78;
Hoare, 79; Holt, 78; Milner, 60). More recently a new type of
language, variously called definitional. neunprocedural, logical or
dataflow, has been proposed for use in the new parallel computer
architectures (Ackerman, 82; McGraw, 82; Hoffman, 82; Arvind, 78;
Ramamarithan, 63; Backus, 78; Shapiro, 83). However, in these
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languages, the programmer still needs to visualize the solution of the
problem in terxms of streams of data, computations by processors and
communications among processes. This level is considered here as
still too low.

A very high level approach to this problem is described in this
dissertation. It involves use of a mathematical specification of a
computation which does not require operational semantics. It consists
only of declarations of structures of variables and equations that
relate the variables. Such a specification is composed without regard
to, or even knowledge of, the underlying implementation of the
computation. The translation of a specification into a computation on
an aobject computer architecture is performed automatically. The
computer architecture selected here to demonstrate the approach is
that of a modern distributed processing system consisting of
interconnected sequential processors, each run under a

multiprogramming timesharing operating system. The translation of the

specification into concurrent programs which communicate with each
other is performed by two translating systems: a Configurator which
implements the global aspects through generating command language
programs, and a MODEL Compiler which implements the local aspects
through generating high level language programs (PL/I) for individual
processes., The translators use the VAX/VMS operating system and
communication facilities, as well as a conventional PL/I programming
language compiler. The selection of the VAX/VMS envirorment has been
purely for demonstrating the approach. The methodology should be
equally applicable to other computer architecture.

The above two translating systems offer the user assistance in
debugging and validating of the concurrent system. The verification
of a concurrent system poses many theoretical and practical problems.
Several specification languages and methods have been proposed for
verification of concurrent systems (Zave, 84; Lauer, 79; Chen, 83;
Parnas, 74; Pnueli, 79). Such specifications would require in
typical practical applications a large amount of labor. Composing
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such a specification is also prone to making numerous errors. Also
all-automatic verification is not possible and human analysis and

assistance is necessary, requiring high level of expertise from the

user. These features would negate our cbjective of reducing labor and

user expertise. The approach here requires only declarations of data

structures and definitions of variables by equations. Checks were
progressively incorporated in the Configurator and MODEL Compiler, for

increasingly complex types of errors. They consist of checks of
compatibility of various attributes of data structures referred in

equations and checks of respective dependencies. The specification is

checked for consistency of use of data types, dimensionality of arrays

and ranges of dimensions. Dependency checks include the completeness

of definitions of «variables and analysis of circularity of

definitions. Also checks are conducted of some rules for allowed
dependencies. The above checks have been incorporated in the two

translating systems and their effectiveness was evaluated
experimentally (Cheng, 83}]. An important consideration in reducing

the number of errors is that the user employs only the very-high-level

view and thus avoids making errors in the implementation level. Also ‘
all corrections and modifications to specification are done in the '
Configurator or MODEL lanquages. The automatic translators employ a

variety of scheduling and communication protocols embodied in . |
operating systems and communications technology, which have been

verified and of which the user need not even be aware.

Por real time systems, another step is necessary. Typically,
real time systems have timing constraints. To satisfy the time
constraints, a designer may have to partition a module into several
smaller ones based on the estimated execution time produced at
compilation time. A system for obtaining the needed timing
information, based on the module specifications, is being developed
(Tseng, 83].

The dissertation describes a very-high level language for
concurrent programming which is devoid of implementation aspects and
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it explores the effectiveness of programming with such a language
(assisted by the two translators). It also describes the operation of
the two translators — the Configurator and MODEL compiler - with
emphasis on

i)

semantic checking of the very-high-level language input and
assisting the user in its composition,

ii) optimization of the overall computation by use of parallelism to
reduce overall execution time and by minimizing the use of main
memory storage and computation time in individual processors.

1.2 CONTRIBUTIONS
The objectives and contributions of the dissertation are as

follows,

i) devising a very-high level lanquage for concurrent programming
which is devoid of implementation aspects.

ii) exploring the effectiveness of programming with such a language

(illustrated by two examples)

iii) devising, demonstrating and exploring the operation of

i)

S T T ST ST S TS R S 3 PN SO R A SURPE ST PRIT WL S T . LI N U1 S W S Y

translators of the very-high level lanquages into an

implementation of the computation in the object computer

architecture, with emphasis on

a) semantic checking of the very-high-level language input and
asgisting the usexr in its composition,

b) optimization of the overall computation by use of parallelism
to reduce overall execution time and by minimizing the use of
main memory storage and computation time in individual
processors.

The dissertation endeavors to make two points:

that very high level definitional, nonprocedural, dataflow
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lanquages can be used very effectively and naturally in
concurrent programming, and

that automatic design and program generation methodology can
support program development and generate an efficient
implementation of the concurrent system.

PRINCIPAL CHARACTERISTICS OF THE VERY-HIGH LEVEL LANGUAGE

The principal characteristics of the proposed programming style,

which distinguish it from conventional programming are summarized
below.

i)

ii)

An overall specification is partitioned into modyles. The. user

prepares a specification for each module. A specification of a.

module consists of declarations of variable structures, equations
that define output variables in terms of input variables, and
declarations of external dependencies of input variables on
output variables. An external dependency declared in one module
indicates that a function is specified in detail in other
modules. A user engaged in composing a specification has to
state whether an external dependency exists, but does not have to
know the detailed definitions involved in the dependency. Thus a
specification of a module becomes independent of other modules.

A variable in a specification may assume only one value. This is
similar to the approach taken in mathematics. This means that
all the values evaluated in the eventual computation procedural
program are represented in the high 1level view by distinct
variables. This allows the user to view all input, interim and
output variables statically, as if they assumed values a priori,
and helps to compose equations that express the relationships
among the variables.

iii) Specification statements may be in an arbitrary order and there

are no control statements, such as for input-output, iterations,

. - . - e
. - R . .0 - ‘- - - « . -
. . - - o " . " e . 3 - » .--",“ A ..-‘. . -

P SAL VLY TN SN S S L P TNy W ALY, SO A S S, YUY S S S, SR SR S, S, . o

L

el & KAk




“Riiee ha sl R dnd s A e dPh et S SN SN £ R A
ks ~ - e .
L

-7 -

=
etc. The user visualizes the specification, not as a set of '1
commands to be performed by a computer - as in conventional 1
programming languages — but as a set of equations that should be

made true, by finding the appropriate values for variables.

\_ "

Thus, every equation is an "invariant” assertion.

iv) The synthesis of modules into a global system is specified in a
configuration language. Modules and files are assembled into a
confiquration by defining a dataflow-like graph - with modules,
subsystems and files as the nodes and their input-output
relationships as the edges. A configuration may itself be a

as s

subsystem represented by a node in a higher level configuration.
The evaluation of a configuration means making all the modules
true (meaning that all the equations in the respective module

,_Jt

specifications are true). Thus a configuration is viewed as a
static description of a computation, similar to individual :;
modules. k
v) The user is not concerned with optimizing efficiency of 1
computations. The automatic translators incorporate optimization
for efficiency. They examine the efficiency of a much larger

number and variations of possible computation schedules than a
human programmer could possibly conceive and consider. Purther,
the user would have to be highly expert in the aobject computer
architecture in order to offer guidance on efficiency. The one

exception to this approach is where the user determines the

. TSNS | S,

partition of the overall specification into modules which the
translators may schedule concurrently.

Lana ani amIngn

Parallel execution of recursive functions have not been included

Py
.
AW

‘ in the translators described.here. Because of the recent interest in
parallel execution of recursive functions in artificial intelligence,
an extension to the sgsystem for dynamic initiation of recursive

definitions is considered for future research.
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. PIGURE 1. Schematic Diagram of Concurrent Programming Procedure
L.
4 1.4 PROGRAM DEVELOPMENT PROCEDURE

The overall procedure in using this methodology is illustrated
schematically in Pigure 1. It starts (at the top) with existence of a
concurrent programming problem. In the case of a top-~down approach,
) the human users have to partition the problem into modules. In a
bottom—up approach, the modules may already exist. Thexre are two
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parallel paths in Pigure 1 for module definition and for glabal system
synthesis. They merge at the bottom of the diagram to produce the
concurrent computation. The orxder of employing these two paths
depends on whether a top—down or a bottom—up approach is undertaken.

The path on the 1left is followed for each module in a
configuration. In case of system modification, only the
gspecifications of affected modules need to be added, deleted or
changed. This path consists of composing a specification of a module
in the MODEL language, and submitting it to the MODEL Compiler. The
MODEL Compiler constructs a dataflow graph for the module
specification. This graph is used for analysis of consistency and
completeness of definitions, to discover errors, and for optimization
of the generated program. The user mus. then make corrections to
respond to error and warning messages issued by the MODEL Compiler.
Pinally, a program is generated, in our case in PL/I. The program can
then be executed as a process, by itself for testing, and in
concurrent operation with other modules as described in a

configuration specification.

The path on the right of Pigure 1 is used to integrate programs
into a concurrent computation. A specification of a network of
modules and files is submitted to the Configurator. The Configurator
constructs a dataflow graph of the configuration and analyzes the
graph for compatability of the interconnections and completeness. The
user must make appropriate changes to respond to error or warning
messages. The Configurator produces then an overall customized design
to maximize the parallelism in execution of modules, and generates a
set of conmand language programs for executing the network of modules
in a chosen environment of computers, communications and their
operating systems. The Configurator also performs system wide
documentation, similar to previously developed systems [Teichreow,
773.
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ASSUMPTIONS

A number of constraining assumptions ware made to permit the

implementation of the Configurator and MODEL compiler wusing the
existing hardware/software systems. They also define the application
domain of the developed system.

i)

ii)

iii)

iv)

The assumptions of the developed systems are listed as follows:

Hardware/Software Environment

The physical environment assumed is a computer network,
where each node consists of one or more sequential computers that'
operate under multi-programming operating systems. The operating
systems must have a file system for handling sequential, indexed
sequential and mailbox files.

Each module or file is assigned to a specific 1location in the
computer network. Changes in location require re-specify the
configuration.

It is up to the user to define backup modules and files. Namely,
the user must define backup files and recovery modules manually.

The systems does not automatically incorporate such operations.

No recursive module definition is allowed. This is restricted by
the inability of dynamically creating modules. However, modules
can be activated dynamically by addressing messages to them.
Also, using the developed systems, i.e. the CONPIGURATOR and the
concurrent MODEL compiler, recursion can Dbe simulated
iteratively.

The above assumptions implicitly restrict the scope of the

research area and the application domain of the developed systems.
Por instance, dynamic module re—allocation is not addressed in this

dissertation. Also, besides saving wrongly addressed messages, the
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I developed systems do not support failure recovery services
) automatically. '

1.6 USE OF EXAMPLES

The style of programming here differs greatly from that of
conventional procedural programming. The dissertation focuses on
presenting the new gstyle through two examples. The first example is
of a resource allocator, such as found in operating systems or in real
time systems. This example uses a top-down approach, where the
overall system is partitioned first and then individual modules are
specified. The second example illustrates cooperative computation in
a distributed processing environment. It consists of econometric
models for a group of countries that are linked together to form a
regional econometric model. This example stresses a bottom—up

. approach - developing or modifying first the individual modules
followed by their synthesis. The operation of the two translators is
described only generally in the interest of brevity. The further
detail of the examples are given in Appendix A.

1.6.1 RESOURCE ALLOCATION

Regsource allocation captures the essence of many concurrent
systems used in real-time applications. It is used in operating
gsystems to allocate computing and input-output resources to jobs, and
in real-time systems to allocate available resources to participants -
o such as routes and landing permissions in an air traffic control
gystem. To simplify the example, only reusable resources are
allocated. Allocation of consumable resources is illustrated in the
second example. There are many strategies for allocating resources.
o The more complex ones use resources more efficiently and fairly while
preventing a deadlock. Again for simplicity, the strateqgy selected
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here avoids deadlocks by requiring that a module submit a maximum
claim xequest for all the resources that it will need, and release
them when not further needed. Also to satisfy the fairness
requirement, requests are satisfied in strict; order of arrival.

To make the example more specific and easier to follow it is
gstated in texms of the Dining Philosophers problem as related by
{Boare, 78] due to E. W. Dijkstra. This however dces not restrict
the generality of the example. Five philosophers share a circular
dining table where each has an assigned seat. There is one fork
between each two seats. A philosopher needs the forks to his right
and left in order to dine. A philosopher desiring to dine requests
the forks. When available, the resource allocator issues both forks
and the philosopher proceeds to dine. When finished, he. releases both
forks, which become available to his immediate neighbors on a
first-come—first-allocated basis.

1.6.2 COOPERATIVE PROGRAMMING

Concurrent programming has been considered in the past mainly as
a top—down development process, outlining first the global aspects and
then proceeding to fill in the local details. With the advent of
computer technology, the price of computers has drastically declined
and the computation power available in the past only in large scale
"main-frames” has become available in small personal computers. This
is bound to enhance cbnnecting local computers to inéégrate many
complementary computations which were developed independently. This
mode of activity has been called c¢ooperative computation. In this
mode, definitions of 1local modules occur naturally reflecting the
interest and expertise of 1local developers. The developers are
typically initially uncoordinated and dispersed organizationally and
geographically. The motivation for linking computers with modules and
data into an integrated system comes later, based on recognition of
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the interdependence of the respective problem areas. The advantage in
synthesizing a global system may be viewed as follows. In an isolated
module, the variables which are imposed by the external enviromment
are considered as parameters and their values are assumed by the user.
In contrast, in a global system these variables can be jointly
evaluated, which makes the results much more reliable. The main
difficulty in synthesizing a number of modules is frequently due to
the difference in definitions given to essentially common variables in
independently developed interacting modules. An agreement wmust be
made Dbetween authors of such modules on needed transformations of
these variables to cbtain a common meaning and structure. Such an
agreement is called a gontract {Gana, 78] and is sometimes defined by
adding an interfacing module which performs the translation.

Project LINK (Klein, 77] is a classical example of cooperative
computation and is used here as an illustration. It consists of a
nunber of institutions who have been developing stand alone
econometric models, typically for their own country or region, and who
cooperate in synthesizing their models into an area or world wide
model. The databases and econometric equations in the local models
are in constant flux due to political and economic changes. Since the
respective economies are highly interdependent, it is very important
to synthesize the models to evaluate the effect of the very latest
developments. The synthesis of models is frequently performed on an
ad—hoc basis. Also results must be obtained quickly to alert the
decision makers to needed changes in economic policies and plans.

The second example has been proposed to us by Y. Yasuda of Kyoto
University and of the staff of the LINK Project at the University of
Pennsylvania. It consists of a study of economic interactions in the
Pacific Basin. The economies studied and their corresponding models
are those of the USA, Japan, Taiwan, Korea, Philippine and Thailand.
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1.7 RELATED WORK

In proposing a nonprocedural approach for specification and
implewmentation of a concurrent system, we are following in the

footsteps of a number of proposed languages for concurrent
programming.

The proposed lanquage, however, is drastically different in its
semantics from previously developed programming languages. It
essentially requires composing data objects and their
inter-relationship mathematically and the compiler will make all the

definitions become true.

1.7.1 CONCURRENT PROLOG

PROLOG is a “tree” structured language. Each axiom is expressed
and evaluated in a tree fashion with the answer at the top of the
tree. In sequential PROLOG, the evaluation of the tree is depth-first
and from left-to-right. The main idea of designing concurrent PROLOG
is to explore the use of concurrency implied in "AND"™ and "OR" nodes
in the tree. Each node in the tree can coomunicate with each other
through passing messages. Since the message passing mechanism really
bears the concept of dataflow, the concurrent PROLOG has a quite
different programming style than sequential PROLOG, it has been called
"object oriented programming” {E.Shapiro, 83]}.

MODEL is not a tree structure language. It uses the syntax
similar to the notions used in algebra. Modules are defined by the
user at a higher-level. The user of the MODEL language does not “"see”
messages passing between modules. He sees only differently organized
entire files being produced and consumed by modules. The user also
does not see the concurrency explicitly. It is up to the Configurator

to decide the concurrency of the overall system. Of course, the more
the modules are being partitioned, there are more candidates to be
computed concurrently.
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1 1.7.2 MODULARITY IN UNIX

——d WL

Kernighan (84] points out the added dimension of modularity
offered Dby connecting processes to form an integrated system (as an
alternative to procedure modularity). He discussed the effectiveness
of this mode of wmodularity when using UNIX. In UNIX, there is a
mechanism called "pipeline” which can be used to construct bigger and
complex programs by connecting small and simpler processes. A
“pipeline” is a message channel between processes.

TR

In MODEL, the devices similar to a “"pipeline” are the MAIL and
POST files. The MAIL and POST files offer much greater flexibility in
communications between modules, including 1 to many and many to 1
distribution of messages. It therefore further enhances this mode of
attaining modularity.

e PN

P L

1.7.3 DATAPLOW MACHINES

Using the currently developed Configurator and the MODEL
compiler, the concurrency of an application system is purely on the
module level. It is Dbased on the partitioning of the overall
specified application system. There is no concurrency below the
module level, because the MODEL compiler generates a sequential
program for each module specification. This, however, is not a
limitation of the proposed approach, the MODEL compiler could equally 5

WL e

well produce parallelism within each module. Maya Gokhale S
{Gokhale,83] demonstrated how to directly <translate a MODEL 3
specification into MAD, a low-level dataflow language designed for the ‘
Manchester dataflow machine. Thus an integrated dataflow system is i:
feasible by using the Configurator (at high-level) and Gokhale's MODEL i
:| compiler (at lower-level) to operate a cluster of dataflow machines g
' concurrently. ‘
[ ;
; 1.7.4 SURVEY OF OTHER CONCURRENT PROGRAMMING LANGUAGES [
! 8
;_,
h‘ -
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, L]

Lo I
Sl Zeinalhd




- 16 -

Historically, concurrent programming languages used either
message passing or shared memory for inter-module communication. This
approach required analysis of the timing and waiting patterns of the
global computation events. This contrasts with the use of files for
inter-module communication which eliminates lower-level timing
considerations.

*Concurrent Pascal (Hansen, 77)

A concurrent programming language based on the MONITOR
concept and ewmphasizing structured programming for concurrent
programs. More recently, a new version of concurrent Pascal
(EDISON) (Hensen, 81] was developed. In EDISON, a new mechanism
supporting abstract data type is implemented. Use of this
language can produce more structured and modularized programs
than its ancestor.

The MONITOR concept requires shared memory hardware and is
not readily usable in distributed processing. However, the basic
concept of a MONITOR for resource allocation can be expressed in
MODEL as illustrated in the resource allocation example (Chapter
4).

*Communicating Sequential Processes (CSP) (Hoare, 78 and 81],

A concurrent programming language using message passing
which combines the guarded command suggested by Disjkstra and
parallel composition of processes. It uses only primitive
message send and receive constructs. The intention of creating
this language was to provide a formalism for concurrent
programming.

*Concurrent SP/k (CSP/k) (Holt et al, 78]

An extension to PL/I for structured concurrent programming
also based on the MONITOR concept.

. R . Lo, . . . - -
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*Concurrent AND/OR Programs (CAOP) ([(Harel and Nehab, 82].

A functional concurrent specification/programming language
which utilizes recursive functions. CAOP can be considered as
non—-procedural. However, communication is still expressed in
terms of individual messages. It resembles concurrent PROLOG in
many aspects. The computation model of this language adopts the
basic concepts suggested by Milner for CCS.

*ADA programming language (Ledgard, 80],{Taylor, 83)

A general purpose programming language for computer embedded
systems which ¢typically require concurrency and real time
operation {Ledgard, 80]. The primary interprocess interaction is
termed “rendezvous”. A "rendezvous” is a match of named entries
called by one task and declared in another task. A "rendezvous”
is completed . when a process executes an ACCEPT statement in the
callee. The major concurrent computation description in ADA is
through TASK description. According to (Hilfinger, 82], this is

. an unnecessary complication to the language and may be well
defined Dby the existing TYPE mechanism in ADA. Structured
programming technique is encouraged by the language design. Also
efforts to verify the correctness of ADA programs have been made
(Taylor, 83].

L4 S S

*Specifying Concurrent Program Modules ([Lamport, 83] |

A specification method intended to specify the properties of
concurrent systems(safety properties and liveness properties)
using intuitive temporal 1logic notions and power domain
construction. There is some similarity between this method and
the one proposed here since both approaches require making
1 v assertions about the data rather than describing the behavior of
L the processes.
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*Calculus of Communicating Systems (CCS) [Milner, 80].
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A calculus of describing mathematical models for processes
and observable behavior of a concurrent system based on the
notion of "flow algebra” (Milner, 79]). The objective was that
the proof techniques for reasoning concurrent sequential
processes could be fully developed in CCS. The concept “"behavior

observation” in CCS has been adopted in PFL, CAOP, and other b

<4

]

*PAISLey, Executable requirements for embedded systems {Zave, 1982} !

The result of the execution of a PAISley specification is a
set logical consequénces derived from the specification. It is a
language to recoxd the requirements in a system (including

1

4

supporting system and application system) in a formal way. It is Ij

not intended to be a "design specification” language, namely is :

not intended to really implement any actual algorithms.
-

*PPL: A Punctional Language for Parallel Programming (Holmstrom,S. ?

83)

A parallel functional programming language with the
intention of formal description of concurrent programs. It is

built on the top of an existing functional programming language
ML. It adopts some concepts from CCS, such as "channel® and
"behavior”. The new extension of the c¢oncurrent part inherits
q the rigour of ML system. It uses "typed channels” and models the

?" imperative part of the language very carefully (the I/O part) by
A using continuation in denotational semantics. It is claimed by
:?_4 the author that PFL is more general than CCS but more difficult
q to reason about formally and informally. i

-

ET *ON THE RELATIONSHIP OF CCS AND CSP (Stephen D. Brookes, 1983)

[

- This article addresses the relationship between the failure
q

9 : model proposed for CSP and the synchronization tree model for
CCs. It finds a suitable set of axioms for the failure
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equivalence relation (similar to Milner’'s cobservation
equivalence). This work reveals the similarity in the underlying
semantic models of CCS and CSP.

*ARGUS: THE PROGRAMMING LANGUAGE AND SYSTEM (Liskov, 83,84]

A programming language and compiler designed to solve
failure and recovery problems in distributed computing. The two
mechanisms, GUARDIAN and ACTION (two abstract datatypes) are used
for implementing surviving services for system failure. The
approach is based on ATOMICY of program units.

More thorough surveys of models and programming languages for
concurrent computation can be found in (D.B. MacQueen, 1979) and
{G.R. Andrews, 1983].

: 1.8 ORGANIZATION OF THE DISSERTATION

The dissertation is organized in the following way.

HIGH-LEVEL M?m PROGRAMMING

v
GENERAL DESCRIPTION IMPLEMENTATION

: 5 . v .

L { CONPIGURATOR  MODEL RESULTS

° ! ! ! !

- - v v v v

PART 1 PART II PART III APPENDIXES

.

o In Part I, the style of the high-level concurrent programming is
:’\ presented by giving ¢two characteristic examples of concurrent
= programming. Also overall description of the design of the two
i'- .

{ developed systems and the major problems solved during the development
¢ are all included.

F. :

- The material in Parts II and III presents the methods, algorithms
3

®

.
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A_’L

1 and techniques used in the implementation of the Configurator and
MODEL compiler, respectively. The algorithms used in implementation
are given with estimated complexity. Reading of Part II and III is
k not necessary if only understanding of the general ideas is desired.

!

0,

In order to 1let the interested reader examine the working
b environment of the two systems in even greater detail, actual
b input/output of the two systems are provided in the appendixes. Also,

PR B RSV

for the sake of completeness, the syntax descriptions of the two
F‘ languages (CSL and MODEL) are given in Part II and Appendix B
respectively.
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CHAPTER 2
COMPOSING A CONFIGURATION OF MODULES AND PILES

2.1 MODULES AND PILES

A user composes a concurrent system by specifying a configuration
of modules and files. The optimal partitioning of an overall
specification into concurrent modules, to obtain low computation time,
is still an open problem. Therefore typically, boundaries of modules
are defined alpng functional divi.sions._ The user considers each
module independently in isolation. Therefore he regards the outside
enviromnment pure.y as data files. Such files can.connect modules in
the overall configuration. Subsystems are subconfiguration defined
separately. In our example of resource allocation, the five
philosophers and the resource allocator form respective modules
naturally. Modules are consumers or producers of their source or
taxget files, respectively.

2.2 CONFIGURATION OF THE DINING PHILOSOPHER EXAMPLE

The configuration for the Dining Philosophers is shown in Pigure
2. Each philosopher module (Pl to PS) produces a file of requests and
releases of resources (REQ _REL) and consumes a file of allocations of

Rk ot b (I A
o T el

resources (ALLOC1l to ALLOCS). The resource allocator (R) has a target
file of allocations (ALLOC) and a source file of requests and releases

b gnm 2 o e o
. ]

(3

of resources (REQ_REL). A target/socurce or consumer/producer

relationship is represented by a directed edge in the network. wWhen

° the same file is produced by one module and consumed by another module
' -21 -
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then the two modules become connected via the file.

t

]
1
v
—t
! !
! R {
| !
Y —— A
]
|
v
e —
! ALLOC |
f - | (PoOST)! - } -
| ! ! ! !
! ! ! ! !
v v v v \'
+ + + + —t +—t —
{ALLOC1 § {ALLOC2 ! JALLOC3 { {ALLOCA | { ALLOCS §
| (MAIL)| | (MAIL)/{ { (MAIL)! { (MAIL)! {(MAIL)!
+— + 4= + — + — —t
H | \ ! 4
! | ! ! {
v v v v \'4 ~
+ + +— + + + —t —t
{ ! | ! ! 1 ! | ! !
! P1 |} { P2 | | P3| { P4 | ! PS |
| ! | | ! i | | i i
4 + + + +— + +—t —_—
| ] | | '
] ! ! !
H v | !
! + >+ —_—t¢ + {
+ >] REQ REL < + -
{ (MAIL) _IL
|
+—> +
: PIGURE 2. Configuration Network Por Reusable Resources
! Allocation Example
L .
4 The user must select the attributes of connecting files and in
& this way provide information for guiding the Configurator in attaining
E high degree of concurrency in the computation. The descriptions of
¢ the organization of a file, given in the specifications of it's
r-. producer and consumer modules, must be compatible. For example, as
- will be shown later, the target file of the resource allocator (ALLOC)
and the source files of the philosophers (ALLOCl,...) contain the same
data but are viewed by their producer and consumer modules as having
| € different organizations. The file compatibility rules are are stated
later as some knowledge of the MODEL language (described in Chapter 5)
q
}
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is necessary. E

Thus the user must instruct the system about the nature of module 1

and file nodes. A module may be ]

,

)|

i) an individually specified module (MDL~default), 5

ii) a group of modules and files that form a subsystem which is y

defined in a separate configuration (GRP), or )

iii) a human with an interactive terminal communicating with the #
system (MAN). This type of "module” naturally is not initiated

automatically. .

1

As noted, the user regards files as aggregates of static data and must i

therefore specify the organization of the data as follows. R

>y

i) Sequential (SaM-default): The sequential file is being
communicated as one entity. .It implies that the file can be
consumed only after it has been entirely produced. Such a file ?‘
may have only one producer module, but any number of consumers. q
It is typically associated with a device, such as tape, printer,
etc,

ii) Index—-sequential (ISAM): Each record in an index-sequential file
has a variable defined as a key which defines (accesses) a record

in the file. There are no restrictions on the order of
references to such a file by producer or consumer modules. If

only a single record can be updated at a time, then the MODEL

Y VY—'-T‘ q

Compiler incorporates code in the generated programs to lock each
other when updating the critical data. Otherwise, the user is
notified and control of access must be part of the system
specification (similar to the resource allocator example). The
user can also indicate that an ISAM file is first produced and

B i e aun a4

later consumed. In such a case the user has to define separate
} 2ld and pew versions of the file and denote an edge between the
two versions in the configuration. An ISAM oganization file is
typically associated with a disk device.

'g
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iii) A mailbox (MAIL): A mailbox file can have a number of producer
and consumer modules. Records from different producers are
queued in a mail file until consumed in order of their arrival.
If there are more than one consumer, they consume the queued
records in an arbitrary order. Thus it is not necessary to have
a physical device for storing a mail organized file.

iv) Post office like facility (POST): A post file is a distributor
of records to other (source) mailbox files. It has one producer
module, and its records include a variable defined as an address
of a destination MAIL file. Therefore, it can have any number of

edges connecting it to mail files.

MAIL and/or POST file organizations are used for direct
connection of files between modules without the use of intermediate

storage device. The producing and consuming may then be concurrent.

The POST and MAIL files use limited space in main memory. The
MODEL Compiler, when generating a program for a module, optimizes the
use of main memory space used for data in these files. Program
optimization causes a producer module to store and produce one or a
few records at a time and the consumer module to consume and store one
or a few records at a time (if possible). If producer and consumer
processes are concurrent, the POST or MAIL facilities need to Dbuffer
only a limited number of records. This is similar to the concept of a
pipeline or a stream. Such a file is referred to in the following as
having a wvirtual dimension along which only a window of records needs
to be buffered. The user is not involved in program design, but is
told that to attain better efficiency only certain forms of subscript
expressions may be used in referencing variables 3w such files. A
specifier of a module is advised by warning messages if other
subscript expression forms were used and whether a file dimension can
or can not be virtual. This is further discussed later.

The above rules must be followed in connecting modules and files
into a configuration. A configuration network is shown in Figure 2

for the resource allocation example. The language used to specify a
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configuration consists of statements that define paths in the network.
Pigure 3 shows the specification for the configuration of Pigure 2. A
statement of _the language consists of node names -~ prefixed by °'M:’
and 'P:* to indicate whether the node is a wmodule or a file,
respectively, and suffixed by desired attributes - connected by edges
‘=>‘., The statement terminates with a ';°.

1 CONPIGURATION: REUSABLE;

2 M:4+P1,+P2,4+P3,+P4,+P5
~>P:REQ REL(ORG:MAIL)
~->M:R->P : ALLOC( ORG : POST )
~>P:ALLOC1{ORG:MAIL),ALLOC2( ORG:MAIL), ALLOC3( ORG:MAIL),

ALLOC4( ORG:MAIL ), ALLOCS( ORG:MAIL);

P:ALLOC1—->M:P1;

P:ALLOC2->M:P2;

P :ALLOC3~>M:P3;

F:ALLOC4A—->M:P4;

F:ALLOCS~>M:PS5;

N o000 » W

PIGURE 3. Specification of Configuration of Pigure 2

A node in the configuration graph may have a number of optional
attributes, especially a physical name providing location, device,
directory. version and record size (described in Part II). Default
values are assumed if these attributes are not provided (which is the
case in Figure 3). Also synonymous names may be declared. Module
node names may be preceded by the + sign to indicate that the module
is not to be initiated automatically by the command language programs
produced by the Configurator, but instead will be initiated manually.
In such a case the manually initiated module must give its identity in
the connecting file(s). Thus the absence of such a module would not
effect other modules.

Por example, a philosopher (Pl to P5) module need not be
initiated automatically with the resource allocator module (R). It
may be initiated when the Philosopher joins the dining arrangement,
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and terminated when he decides not to eat there again.
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CHAPTER 3
OPERATION OF THE CONFPIGURATOR

3.1 PUNCTIONS AND PHASES OF THE CONFIGURATOR

This chapter provides an overview of the Configurator. Part IIX
gives more detail and systematic description.

The Configurator has five functions: checking the input
configuration, scheduling execution of modules, evaluating diameters
of strongly connected components (to be used in the iterative solution
to the distributed simultaneous equations) , generating JCL and Pl/I
programs and generating user system documentation.

The first phase of the Configurator performs syntactic checking
of individual statements and constructs a configuration graph where
the nodes are assigned all the necessary attributes, supplied in the
specification or determined by default (Section 11.4).

The second phase analyses the graph and verifies that the rules
for composing a complete and congsistent specification of a
configuration (Section 10.6).

Deeper global checking is conducted as follows. Maximally
strongly connected components (MSCC) in the configuration graph are
identified and the user is warned that they constitute a necessary but
not sufficient condition for a deadlock (a deeper check is conducted
by the MODEL Compiler for each of the modules in the MSCC, described
later). Warning and error messages are couched in the configuration
language and do not refer to implementation level concepts (Section

-27 -
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11.6).

In the third phase, the Configurator schedules the entire system.
It attempts to minimize the usage of mailbox space. This is based on
the limited information available in the configuration, although
better efficiency could be abtained if their intercommunication
pattern was known in detail. Processes of modules connected by post
or majil files are initiated together and operate in parallel if
possible. Such module nodes form a parallel component and are
represented by a single node in a component graph. Modules prefixed
by + sign are initiated manually. If an edge exists between the two
ISAM (standing for Indexed Sequential Access Mechanism) files, it
implies that completion of the producer wmodules must precede
initiation of the consumer modules. This graph consists of nodes,
each representing a module or a group of modules in a parallel
component, and edges indicating sequential order between nodes. This
component graph is checked for cycles, and émr messages are issued
if any cycles are found (Section 11.7).

The Configurator then calculates dJiameter for each strongly
connected components in a configuration. The diameters are needed in
the distributed termination algorithm (Section 11.8).

In the next phase, command language statements are generated to
run the entire configuration of programs and files in a chosen
enviromment. The program generation phase uses the available
facilities offered Dby the operating systems and communications
software as well as the available processors and communication links,
In the case of the implementation using VAX/VMS, both, sharing memory
or sending and receiving messages, are available for communications
between modules. The technique of code generation can conveniently
express either implementation strategy. The message communication
method was selected as it is more suitable for a geographically
distributed network and it retains better independence of a program
from the types of devices used; for instance, a MAIL file may serve
as a sequential file (without user intervention), depending upon
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whether it is used to connect modules in a configuration or not
(Section 11.9).

Due to the particular facilities in VAX/VMS, the programs
generated by the Configurator consist of:

i) PL/1 programs to establish the necessary mailboxes.
ii) coomand lanquage programs which initiate and synchronize
sequential module or subsystem execution.

The command language programs are placed in respective files. These
files form a tree structure, where each file at a non—-terminal node
executes the files in the nodes below it. Thus the root file of the
tree is the "main” command program which contains commands for
executing the files which initiate subsystems or modules, and so on.
However, the command program files for modules to be initiated
nanua.lly_axe not present in the tree. They are referred by the user
for exscution. In addition to the command language programs generated
by the Configurator, there are PL/I program files for each moduie
generated by the MODEL Compiler.

A module reading a record from a mailbox is suspended if the
mailbox is empty, until a record has been written by another process
to the respective ma.j - ox. A module is suspended when writing a
record to a full mailbox, until a record in the mailbox has been read
by ancther process and space has become available. The latter
suspension is not necessary if the space in the mailbox is unlimited.

The above communication protocols synchronize the concurrent
processes. Sequential order of execution is obtained by using the
synchronization facility in VAX/VMS command language (VAX/VMS, 80].
It assures that a predecessor process is completed before a successor
process is initiated.

Pinally a number of reports document the configuration
specification, its network, the modules, the files and their
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attributes, the schedule and the compatibility requirements imposed on
files that connect modules.

The remainder of this chapter describes the main problems
encountered in the design and implementation of the Configurator and
the methods used to resolve these problems.

3.2 CHECKXING

The checks performed by the Configurator are divided into the
following classes:

i) Completeness and inter-module connections
ii) Consistency of (derived) temporal relations
iii) Compatibility of interfacing file descriptions

3.2.1 COMPLETENESS AND INTER-MODULE CONNECTIONS

The completeness check detects the existence of isolated nodes in
a configuration (Section 11.5). The Configurator also checks
connection patterns among modules and connection restrictions for each
node. Basically, the following consume/produce patterns are allowed
for the different file types:

MAIL n:l
POST 1:n
SAM 1:n
ISAaM n:m

Similar restrictions have been made for MODULE nodes and the
summary of the restrictions can be found in Section 10.5.

3.2.2 CONSISTENCY OF TEMPORAL RELATIONS

The underlying assumption used in the consistency checking is
that all the modules in a configuration are ATOMIC (section 11.6.1),
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namely they acquire all their input files on initiation and release
them on termination. There are also three temporal relations defined
on five basic module-file connections patterns (section 11.6.1). Let
a pair of real numbers «Mis,Mie> be the starting and ending times of
module Mi, the three temporal relations and implied execution time
constraints are:
i) sequential relation, denoted as Mi => Mj,

implies Mie < Mjs.
ii) mail relation, denoted as Mi —> Mj,

implies Mjs <= Mis & Mje >= Mie.
iii) parallel relation, denoted as Mi !|! Mj,

implies Mis=Mjs and Mie=Mje.

The transitivity of these temporal relations are defined (section
11.6.1.2). The temporal relations are propagated in a configuration
graph according to those transitivity rules.

An inconsistency in a configuration graph is obtained by deriving
either Mi=>Mi or Mi->Mj and Mi=>Mj based on the transitivity rules
(Section 11.6).

3.2.3 COMPATIBILITY OF INTERFACING FILE DESCRIPTIONS

Because of the independent development of individual modules, the
checking of the compatibility of interfacing file descriptions is
rather difficult. However, messages are issued to warn the user of
this requirement. Documentation is produced to show for each file,
it’'s consumer and producer where compatibility of file structure is
required (Section 10.6).

3.3 OPTIMIZATION

The Configurator uses the component graph to schedule module.
Processor and memory usage is optimized by calling a module as late as
possible when its output is needed. The concurrency of the overall
gystem is also optimized by the use of the component graph (Section

PR, _JURFCN
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11.6.7).

3.4 DIAMETER EVALUATION

The diameter of each strongly connected component in the
configuration graph is needed for the distributed termination of the
iterative multi-node solutions (Section 16.2). The Configurator
calculates the diameters of the strongly connected components in a
configuration and passes the diameters to the generated JCL programs,
to be used by individual modules at runtime (section 11.8).

3.5 CODE GENERATION

In this phase, the Configurator generates JCL and PL/I programs
for the execution of a user system. The "tree"” structured execution
pattern is accomplished by use of the commands in VAX/VMS. Detail
description of the code generation part of the Configurator is given
in section 11.9 (Part II). Example JCL and PL/I programs generated
from a CSL specification are given in Appendix A.
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CHAPTER 4
SPECIPYING INDIVIDUAL MODULES - RESOURCE ALLOCATOR

To complete implementation of the configuration of Pigure 2, it
is necessary to specify each module independently. In this
configuration there is a philosopher module, which repeats five times,
one for each of the five philosophers, and a resource allocator
module. The specifications of these modules are discussed below.
This chapter provides an introduction to the use of the MODEL
language.

4.1 THE PHILOSOPHER MODULE

Pigure 4 shows the specification of the philosopher module stated
in the MODEL language. The specification is divided for convenience
into five parts: header, data description, data parameters and
internal and external equations. There are also explanatory comments
and statement numbers in Pigure 4. The rational behind composing the

statements is discussed in the following.

The header consists of the name of the module (Pk), the source
file of allocations (ALIOCk) and target file of requests and releases
(REQ REL). The lower case k denotes the unique number of each

philosopher.
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3
/ *HERDER*/ q
1 MODULE: Pk(k=1 to §); /* module name (repeats 5 times) =*/
2 SOURCE PILE: ALLOCK; /* allocation files ®x/
3 TARGET PILE: REQ REL; /* file of requests and releases */

/*DATA DESCRIPTION*/

4 1 ALLOCk IS PILE(ORGANIZATION IS MAIL)
2 MSGA(*) IS RECORD, /* individual allocation message */
3 PROC_ID IS PIELD(PIC’'9°), /* process identifier */
3 CIOCKA IS PIELD(BIN PIXED); /* time of allocation =/
S 1 REQ _REL IS PILE(ORGANIZATION IS MAIL)
2 MSGR(*) IS RECORD, /* request/release message */
3 PROC_ID IS PIELD(PIC'9‘'), /* req/rel process id ®x/
3 RQ OR_RL IS PIELD(BIT(1l)), /* request=0,release=1 */
3 RES(5) IS PIELD(PIC'9'), /* quantities of resources>*/
3 CLOCKR IS PIELD(BIN PIXED); /* reg/rel time x/

/*DATA PARAMETERS*/

(I,J) ARE SUBSCRIPTS:; /* I for MSGR, J for RES */
IX IS PIELD(FIXED BINARY) /* indirect( sublmeax ysubscript*/
IX(I)=IF I=1 THEN 1
ELSE IP RQ OR_RL(I-1) THEN IX(I—l )+l
ELSE IX(I-1); /* index of MSGA *®/
9 END. mGR(I)-RQ_OR_RL(I) & RANDOM> .99; R
/* definition of the range of MSGR */

'.‘-l.'.'Al‘A)‘._-‘l P SRS L

RN Y]

A'I'Al\"

/*EQUATIONS FOR VARIABLES IN PILE REQ REL*/

10 PROC_ID(I )-<k> 3
RQ OR_RI(I)=IF I=1 THEN '0O'B ELSE “RQ_O!LEL( I-1);
RES(1I, J)-(J-mn(k,S))l(J-mD(kﬂ 5));
/* ht and left fork request =»/
13 CIOCKR( I )=IF I=1 THEN TIME

ELSE IF RQ OR_RI(I) THEN M(IX(I—].))—IOOO"IDG(W)
ELSE CLOCKR( I-1 )-10000*LOG( RANDOM )

kB

/*EQUATION DEFINED EXTERNALLY (IN OTHER MODULES)*/
14 MSGA( IX(I) )=DEPENDS_ON(MSGR(I));

PIGURE 4. Specification of Philosopher Module

N

The data description part in Pigure 4 declares the structure of
the two files. A data structure is described hierarci\ica.lly as a
tree. The apex node is called PILE, an intermediate node is either a

NI e oe g
s

GROUP or a RECORD. A RECORD is the smallest structure exchanged

g between an external enviromment or device and the module. A terminal

{ node is denoted as a FIELD. Each of the nodes is named, and may
E repeat and form a vector. The number of repetitions, or size of the {
. ]

‘. vector is in parenthesis following the name. “*" indicates an unknown
(variable) number of repetitions. The primitive data types are .
: !
(]
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similar to PL/I - picture, decimal (fi . loat), binary, bit and
character. Thus the ALLOCk file (stateme = - ontains a vector of
allocation messages (records) MSGA. The .EQ REL file (statement 5)
contains a vector of requests/releases messages (records) MSGR. These
two entire vectors are viewed by the user as they were available a

priori and his main task is to compose equations which relate them.

A philosopher requesting/releasing resources/forks identifies
himself in the PROC_ID field of MSGR. The philosopher to whom
resources are allocated (i.e. by the resource allocator module) 1s
identified in the PROC_ID field of MSGA. The records in the ALLOCk
file come from a post organized file. MSGR may be for a request or a
release of resources, and RQ OR_RL denotes which case it is. Each
MSGR includes a vector of resources RES, which contains the quantity
of each resource that is requested or released. There are 5 resources
in the problem of the S dining philosophers - each consisting of a
single fork in a respective position. Pinally, CLOCKA and CLOCKR are
used to simulate the clock (in seconds) of an allocation and
request/release, respectively.

Repeating data structures form arrays. The individual elements
of these arrays are referred to by use of subscripts. The sizes of
dimensions of arrays may be variable and need to be defined. They
congtitute the data parameters of the specification in Pigure 4.
Statement 6 declares two free variables I and J that are used as
subscripts. They assume all the integer values from 1 to the size of
the dimension of the variable which they index. Note that they differ
from ordinary variables which can assume only a single value. I is
used to subscript the request/release messages, (MSGR and its
constituents), and J to subscript the resources, RES. Note that RES,
the requested or released resources, changes for each message and
therefore is two-dimensional, with subscripts I,J. I indexes the
"historical” values of RES. There is a correspondence between
individual allocations and requests/releases. Por each requesting
MSGR, (where RQ _OR_RIL=0), there is a corresponding allocation MSGA.
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No MSGA is necessary for a release MSGR, (with RQ OR _RI~1).

A widely used method in MODEL for relating elements in two arrays
is to define separately the indices of the related elements. This is
the case in defining an Jindirect index vector IX (an internal
variable) which gives the indices of MSGA for each index I of MSGR.
IX is declared in statement 7 and defined in statement 8. IX is a
vector of the same shape as MSGR. Thus it has a value for each value
of I. Por I=1 it has a value 1. Then, IX is increased by one if the
preceeding MSGR is a release. we call IX sublipear to I. The
sublinear relation between IX and I satisfies two conditions:
IX(1)=0{1 and IX(I)-IX(I-1)=O0{1l. The program generator recognizes
sublinearity and uses it to generate a more efficient object program.
IX is referred later in statement 13.

-+ MAIL

s
a2

External

Philosopher
Enviromment

q.
:

a) Illustration of External Dependency Edge

Subscripts Record Record

I IX(I) MSGR Dependency MSGA

1 1 request 1 ___external(R) .. allocation 1

2 1 release 1 « internal(P)

3 2 request 2 _external(R) o= allocation 2
/

4 2 release 2 <o internal(pP)

b) Indices of Records in the External Dependency Statements

FPIGURE 5., External Dependency As Viewed Prom The Philosopher Module
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Pigure 6(b) illustrates the relations of these subscripts and
records. (The Dependency column is described later).

A condition of the last element in a dimension is denoted in
MODEL by a variable named by prefixing END to the name of a variable
with the rightmost (lowest order) dimension. This variable has the
same shape as the one named in it‘'s suffix. All it's elements have a
value O, except for the last element in the rightmost dimension which
has value 1. Statement 9 defines END.MSGR, which has the same shape
as MSGR and effectively gives the size of MSGR. It expresses an
assumption that a philosopher, after having dined repeatedly, on the
average 100 times, exponentially distributed, has had enough and
decides to quit and dine elsewhere. Thus every element in END.MSGR(I)
has a value of 0, except the last element which has a value of 1.

Statements 10 through 13 define the four PIELD variables 1in the
REQ _REL file. PROC_ID is the philosopher identification. The value
of RQ OR RL is O for a request and 1 for a release. The requeste
forks in RES are always to the left and right of the philosopher, as
expressed in statement 12, CLOCKR simulates the time stamp of a
request or of a release of resources. Statement 13 shows that for
I=1, CILOCKR is the time of the first dining request (defined by the
function TIME), othexwise it depends on the time of the previous
allocation (CLOCKA(IX(I-1))) and the dining and thinking times which
are assumed to be exponentially distributed with 1000 and 10000
seconds means respectively. Note that this assumes that a philosopher
may join and quit the diners at any time of his choice and the number
of philosophers may be variable. However, each philosopher must have

a seat assigned at the table in advance of the first eating.

To specify the philosopher module completely it is further
necessary to specify external dependencies due to functions provided
by other modules. The functions provided by the outside environment,
however complex they may be, interest the module specification only to
the extent of knowing that they exist. while the outside relation may

change, as long as the dependency continues to hold it is not
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necessary to regspecify the module. In our example it is necessary to
specify in a philosopher module the external function of an allocation
in response to a respective request (this dependency is imposed by the
resource allocator module). It is not necessary to show this

relationship in detail as expressed in the R module. A user can

express it in a reduced form as shown in statement 14 of Pigure 4.
- The pseudo function DEPENDS_ON is used to express the fact that the
‘ ) source record variable(s) on the left hand side depend externally on
! the target record parameters of the function. Note that the internal
dependency of a release on an allocation is expressed implicitly in
equation 13. These two dependencies are illustrated by the labeled
arrows in the table at the bottom of Pigure 5.

4.2 THE RESOURCE ALLOCATOR MODULE R.

Figqure 6 shows the specification of the resource allocator module
R. The R module is larger and more complex than the philosopher
module. It further illustrates the equational style.

Statements 1-3 in Pigure 6(a) give the name of the module, R, the
source file REQ REL, and target file ALLOC. Another target file
SIMULATION is a report of the results of the simulation of the Dining
Philosophers problem, The specification of SIMULATION is given in
statements in Pigure 6(c). REQ _REL and ALIOC are declared in
statements 4 and S of Pigure 6(a). REL_REQ consists of the combined

requests/releases received in the mail from all other modules in the
L sequence of their arrival. ALLOC consists of all the allocations of
resources distributed through the post office like facility to all the
PY modules in the orxrder that they are issued. Note that the records in
ALLOC form a two dimensional ragged edge matrix, with each row
corresponding to all the allocations that can be made in response to a
b respective request or release message. This differs from the vector
P organization of ALLOCk. However this does not violate the rules of

compatibility of communicating files.
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/*HEADER*/

MODULE:R;

SOURCE : REQ_REL; /* merged requests/releases from all processes */

TARGET :ALLOC, " /* merged allocations to all processes */
SIMUU\TION /* report of results of simulation x/

/*DA‘I'A DESCRIPTION*/
4 1 REQ_REL IS FILE, (ORG IS MAIL),
2 MSGR(*) IS RECORD /* messages for req/rel of resources */
3 PROC_ID IS FIELD (PIC’'9'), /* id of process *x/
3 RQ_OR_RL IS FIELD (BIT(1l)), /* request=0,release=l */

WK

3 RES(S5) IS FIELD (PIC'9’), /* vector of resources */
3 CLOCKR IS FIELD (PIC'(9)9° ); /* time of message *x/
S 1 ALIOC IS FILE, (ORG IS POST, KEY IS PROC_ID),
2 MSGAS(*) IS GROUP, /* group of alloc messages */
3 MSGA(*) IS RECORD, /* individual message */

4 PROC_ID IS FIELD (PIC'9’ ), /* allocated process *x/
4 CLOCKA IS FIELD (PIC'(9)9');/* time of allocation */
*

6 1 QUEUE IS FILE, /* process queues /
2 STAT_Q(*) IS GROUP, /* queue for each req/rel */
3 PROC(*) IS GROUP, /* process in queue x/
_ID IS PIELD (PIC'9'), /* id of process */
4 N_Ix IS PIELD (PIC'9'),/*index of process in queue */
4 OUT_IX IS FIELD (PIC'9’), /* index of process in alloc */
4 RES(5) IS GROUP, /* resource vector */

S CLAIM IS FIELD (PIC'9'), /* maximum resources claimed */
S SUM_CLAIM IS PIELD (PIC'9’),
/* sums of claims for resources in q */
S SAT IS FIELD (BIT{(1l)):; /* availability of resources */
7 1 RES_LIMIT IS GROUP,

2 NUM_RES(S) IS FIELD (PIC'9'); /* & of resources available */

/*DATA PARAMETERS*/

8 (I,J.X,L) ARE SUBSCRIPTS;
/* I subscnpt of request/release messages */
/* J subscript of resources
/* K subscript of processes in queue */
/* L subscript of group of allocations x/
9 SIZE.PROC(I)=IF I=1 THEN 1
ELSE IF RQ OR_RL(I) THEN SIZE.PRC(I-1)-1
ELSE SIZE.PROC(I-1)+1;
/* size of process queue *
SIZE.MSGA(I)= IF SIZE.PROC(I)>O THEN OUT_IX(I,SIZE.PROC(I))
/* size of group of allocations */
11 NUM_RES(J)=l; /* one fork in each position */

PIGURE 6(a) Resource Allocator Module Specification: Header,
Data Description and Definition of Data Parameters
The file compatibility rules are briefly summarized below.

i) The data structures that constitute the unit of transfer of
information between different media in a computer system are
denoted as records. A match must be possible between the
variables in the corresponding records in producing and consuming
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module specifications. The 1lengths (in bytes) of matching
records, specified separately in the consumer and producer
modules, must be the same.

ii) Matched variables in the respective records may be named
differently in the producer and consumer module specifications,
but they must have the same attriputes, i.e. data type, scale
and length.

iii) Matched records may form arrays in respective specifications. It

Snbnbenbocdll?  Med koot
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is not necessary that the number of dimensions of the arrays in
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the specifications of the file in consumer and producer modules 4
be the same, but the total number of records must be the same. ]

There is also an internal QUEUE file consisting of the history of
the status of the queue of processes. It repeats for each
request/release. Processes are added and retained in the queue in the
order of the respective requests, and omitted as a result of
respective releases. The QUEUE file is described in statement 6.
STAT Q is the status of the queue for each request/release message.
The individual entry in the queue is PROC. It contains the
identification of the process PROC_ID. Two indirect index variables,
IN_IX and OUT_IX are described further below. A vector RES contains

information on requested resources. RES is a matrix with rows

corresponding to processes and columns corresponding to resources.
The components of RES, i.e. CLAIM, SUM_CLAIM and SAT, are therefore
r— also matrices. (Actually 3 dimensional, repeated for each
request/release). CLAIM is the number of resources claimed by the
process. SUM_CLAIM is the cumulative number of resources needed to
satisfy all the claims by this process and it's predecessors in the

, queuve. SAT is a binary variable indicating for each process whether
the claims for a resource and it's predecessors resources, in the
order of resocurces in RES, can be satisfied from available resources.

¢ It is typical in MODEL to specify permutation or selection of

E- elements of a vector by defining the indices of the respective
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elements. IN_IX is the index of a process in the preceding queue,
i.e. in STAT_Q(I-1). A number of processes may be allocated
resources as a result of a release message. OUT_IX is the index of
the process in the respective group of allocation messages. Both,
IN_IX and OUT_IX increase monotonically with the order of the

processes in the queue. These variables are discussed further.

A number of parameters are used with, or are attributes of, the
data. The subscripts I,J,K and L are declared in statement 8. The
subscript I indexes request/release messages. J indexes resources
( forks). K indexes positions of processes in the queue and L indexes
allocation messages. There are three dimensions that require
definition of their sizes. The range of I is assumed as infinity
reflecting the notion that R will operate forever. There are a number
of ways to define a size of a dimension in MODEL. The use of the END
prefixed variable was already presented in Pigure 4. Another way to
define a size is through prefixing the keyword SIZE to the name of a
respective data structure. SIZE prefixed variables define the number
of elements in the respective dimension. The size of the vector PROC,
i.e. the number of processes in a queue, is defined in statement 9.
As shown in statement 9, the size of the queue increases by one for
each request and decreases by one for each release. The size of the
vector MSGA, i.e. the number of allocations in a group is defined in
statement 10. The size of the group of allocation messages, MSGA, is
the same as the value of OUT_IX for the last process in the queue.
This is discussed further below. Pigure 6(a) e